A pointwise convergence theorem for sequences of continuous functions.
نویسندگان
چکیده
منابع مشابه
Group-valued Continuous Functions with the Topology of Pointwise Convergence
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set F ⊆ X and every point x ∈ X \ F , there exist f ∈ Cp(X,G) and g ∈ G \ {e} such that f(x) = g and f(F ) ⊆ {e}; (b) G-regular provided that t...
متن کاملPointwise Convergence of Bounded Cascade Sequences
The cascade algorithm plays an important role in computer graphics and wavelet analysis. For an initial function φ0, a cascade sequence (φn)n=0 is constructed by the iteration φn = Caφn−1, n = 1, 2, . . . , where Ca is defined by Cag = ∑ α∈Z a(α)g(2 · −α), g ∈ Lp(R). In this paper, under a condition that the sequence (φn)n=0 is bounded in L∞(R), we prove that the following three statements are ...
متن کاملPointwise Convergence on the Boundary in the Denjoy-wolff Theorem
If φ is an analytic selfmap of the disk (not an elliptic automorphism) the DenjoyWolff Theorem predicts the existence of a point p with |p| ≤ 1 such that the iterates φn converge to p uniformly on compact subsets of the disk. Since these iterates are bounded analytic functions, there is a subset of the unit circle of full linear measure where they are all well-defined. We address the question o...
متن کاملStatistical Convergence and Ideal Convergence for Sequences of Functions
Let I ⊂ P(N) stand for an ideal containing finite sets. We discuss various kinds of statistical convergence and I-convergence for sequences of functions with values in R or in a metric space. For real valued measurable functions defined on a measure space (X,M, μ), we obtain a statistical version of the Egorov theorem (when μ(X) < ∞). We show that, in its assertion, equi-statistical convergence...
متن کاملA Relation Between Pointwise Convergence of Functions and Convergence of Functionals
We show that if (J,,} is a sequence of uniformly LI-bounded functions on a measure space, and if.f, -fpointwise a.e., then lim,,_(I{lf,, 1 -IIf,, fII) If I,' for all 0 < p < oc. This result is also generalized in Theorem 2 to some functionals other than the L P norm, namely I. /( J,, -(f, f) f ) -1 0 for suitablej: C -C and a suitable sequence (fJ}. A brief discussion is given of the usefulness...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1971
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1971-0280902-6